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It is generally assumed that the quality of X-ray diffraction

data can be improved by merging data sets from several

crystals. However, this effect is only valid if the data sets used

are from crystals that are structurally identical. It is found that

frozen macromolecular crystals very often have relatively low

structure identity (and are therefore not isomorphous); thus,

to obtain a real gain from multi-crystal data sets one needs to

make an appropriate selection of structurally similar crystals.

The application of hierarchical cluster analysis, based on the

matrix of the correlation coefficient between scaled intensities,

is proposed for the identification of isomorphous data sets.

Multi-crystal single-wavelength anomalous dispersion data

sets from four different protein molecules have been probed

to test the applicability of this method. The use of hierarchical

cluster analysis permitted the selection of batches of data

sets which when merged together significantly improved the

crystallographic indicators of the merged data and allowed

solution of the structure.
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1. Introduction

The flash-cooling of crystals has become commonplace in the

field of macromolecular crystallography (MX) and today over

90% of all protein structural data are obtained at cryogenic

temperatures (Garman, 2010). The main advantages of cryo-

cooling for MX data collection are mitigation of the rate of

radiation damage, improvement of the diffraction resolution

reachable and the ability to carry out crystal screening and

ranking in advance of data collection. Unfortunately, cryo-

genic techniques can also introduce structure artefacts

resulting directly from temperature effects or indirectly from

the addition of cryoprotectants and temperature-induced pH

changes (Juers & Matthews, 2001; Halle, 2004; Dunlop et al.,

2005). There is also the additional complication that the flash-

cooling process is not completely under our control. For

instance, among other effects, the cooling rates of the crystals

may be different for crystals of different sizes, the thickness of

the remaining cryoprotecting liquid surrounding the crystal

will vary and the velocity of crystal transfer from the cryo-

buffer to the cryogen may be different. As a result, although

the crystals are apparently identical at room temperature,

cryocooled crystals are rarely if ever absolutely structurally

identical and often have slightly different unit-cell parameters,

leading to issues of non-isomorphism that have been under-

stood since the dawn of the study of macromolecules by

crystallographic methods.
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The amount of diffraction data that can be obtained from a

single crystal is limited by radiation damage (Garman, 2010;

Ravelli & Garman, 2006), mainly owing to the resolution-

dependent reduction in diffraction intensity. In general, fewer

data can be obtained from a small crystal before significant

radiation damage occurs, as the diffracting volume is lower.

Specific chemical modifications occur in the protein following

a relatively small dose of irradiation (less than 2 MGy),

affecting the success of SAD/MAD structure solution (Cianci

et al., 2008). In those cases where several crystals of the same

type are available, the result of the structure study can be

substantially improved by using a multi-crystal data-collection

strategy, as has often been applied for room-temperature data

collection (Blundell & Johnson, 1976). For low-temperature

data collection the inherent non-isomorphism of cryocooled

crystals discussed above may make multi-crystal data collec-

tion significantly more challenging. In order to gain from the

use of multiple-crystal data-collection strategies, the central

task is how to identify isomorphous crystals such that appro-

priate partial data sets can be merged in order to obtain an

improved final data set.

In this paper, the applicability of a hierarchical cluster

analysis for selecting isomorphous crystals has been tested.

Several multi-crystal data sets were collected with the goal of

solving the structures of insulin, bovine trypsin and thaumatin

using the (weak) anomalous signal from S atoms. Additional

experiments were performed using crystals of selenium-

labelled chorismate synthase (AroF) from Mycobacterium

tuberculosis. In all cases, it was confirmed that a much more

accurate anomalous signal and ultimately success in sub-

structure determination was obtained by merging data from

multiple crystals preselected according to the results of the

cluster analysis.

2. Materials and methods

2.1. Sample preparation

Bovine Zn-free insulin (INS), thaumatin (THA) and bovine

pancreatic trypsin (TRY) samples used for crystallization were

purchased from Sigma. The crystals were grown and cryo-

protecting solutions were prepared according to the standard

procedures described in the literature. Crystallization plates

with crystals of the Se derivative of AroF (PDB entry 2o11; M.

Bruning, G. P. Bourenkov, N. I. Strizhov & H. D. Bartunik,

unpublished work) were kindly provided by Galina Kachalova

and Hans Bartunik within the framework of the European

BIOXHIT programme. Relevant crystal characteristics and

expected anomalous signals are summarized in Table 1.

2.2. Data collection and processing

The diffraction measurements were carried out on beamline

ID23-1 at the European Synchrotron Radiation Facility

(ESRF; Nurizzo et al., 2006) using an ADSC Q315R CCD

detector. Only very small crystals of INS, THA and AroF, with

largest dimensions of between 20 and 30 mm, were selected for

data collection. TRY crystal sizes were between 30 and 50 mm.

The crystals were either first transferred to cryoprotecting

solution (for INS, THA and TRY) or mounted directly (AroF)

from the crystallization solution using large nylon loops or

litho-meshes. The mounts (loops) containing multiple sample

were cryocooled in a 100 K Oxford Cryostream 600 nitrogen-

gas stream.

For planning of the diffraction measurements, the program

BEST (Bourenkov & Popov, 2010) was used. Identical data-

collection conditions (resolution limit, exposure time, rotation

range and oscillation width; Table 1) were applied to each type

of sample. The absorption dose rates were estimated using the

RADDOSE program (Paithankar et al., 2009). The incident-

beam intensity was attenuated to provide a total absorption

dose per data set of less than 2 MGy in all cases; this implies

that no significant radiation damage is expected for any of

the data sets. For small crystals of INS, THA and AroF two

rotation ranges separated by 180� were chosen to ensure

accurate sample centring in the beam during both sweeps (i.e.

avoiding the orientations in which the crystal image in the on-

axis microscope would be occluded by the mounting loop) and

to ensure that only one crystal is being hit by the beam at any

time.

Data were indexed, integrated and scaled using XDS/

XSCALE (Kabsch, 1993, 2010a,b). In order to ensure consis-

tent indexing, one data set was arbitrarily chosen as the

reference data set in the input file of XDS for each of the four

samples. Standard data-processing statistics are summarized in

Tables 2, 3, 4 and 5. The data sets are denoted LX_Y, where X

enumerates the mounting loop and Y the crystal in the loop.

2.3. Clustering of diffraction data

The most popular clustering algorithm in biological appli-

cations and crystallography is hierarchical cluster analysis

(Barr et al., 2004; Buehler et al., 2009; Hofmann et al., 2009). It

traditionally represents the hierarchy as a tree, or a dendro-

gram, with individual elements at one end and a single cluster
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Table 1
Data collection for all proteins included in this study.

Structure
Space
group

Total No.
of crystals

Inverse-beam
strategy

X-ray
energy
(keV)

Resolution
(Å)

Rotation
range (�)

Oscillation
range (�)

Dose
(MGy)

No. of
residues

No. of
anomalous
scatterers

Anomalous
scatterer

Expected
anomalous
signal (%)

Insulin I213 12 Yes 9 2.2 50 + 50 2 1 51 6 S 1.2
Trypsin P3121 17 No 9 2.2 360 2.25 1 223 14/1 S/Ca 0.9
Thaumatin P4121 13 Yes 6.8 2 100 + 100 1 2 207 17 S 1.6
AroF P6122 12 Yes 12.6 3.5 90 + 90 1.5 1 407 11 Se 4.5



containing every element at the other. Clustering thus starts

with each element as an effectively separate cluster and then

merges them into successively large clusters.

To perform the analysis, the distance between the clusters

has to be defined and calculated. Here, when applied to

diffraction data obtained from frozen crystals, the clustering

technique is applied through use of the correlation coefficient

(CC) matrix. This matrix is generated according the CCI(i, j)

values output by XSCALE (Kabsh, 2010b) calculated in

resolution shells for the common unique intensities of each

pair of data sets. The mean intensity in each shell for each data

set is subtracted (W. Kabsh, private communication). The

CCI(i, j) values are converted to a distance matrix using the

equation

dði; jÞ ¼ ½1� CC2
I ði; jÞ�1=2: ð1Þ

The distance L(A, B) between two generic clusters A and B is

defined using the average linkage. This is given by the formula

LðA;BÞ ¼
1

NANB

PNA

p¼1

PNB

q¼1

dðip; jqÞ; ð2Þ

where NA and NB are the number of elements in each cluster

and ip and jq are the data sets in each of them.

To select the number of clusters, it is possible to cut the

dendrogram at a specific level of similarity. We applied the

identical cluster cutoff distance L = 0.14 to all four systems

studied. This corresponds to a correlation coefficient CCI(i, j)

of 0.99. The data sets were produced by scaling (using

XSCALE) and merging together the data forming the largest

cluster. A further data set for each test system was produced

by scaling all data together. It may be possible that application

of more sophisticated clustering methods would allow auto-

mation of the distance-cutoff criterion; however, use of the

correlation coefficient seems a sufficiently intuitive method for

this initial work.

The practical implementation of this cluster analysis was

performed using the R language for statistical computing (R

Development Core Team, 2011).

2.4. Substructure determination and phasing

For experimental phasing, the SHELXC/D/E program

suite was used through the HKL2MAP interface (Pape &

Schneider, 2004; Sheldrick, 2008). The signal-to-noise ratio

in anomalous differences, h�F/�(�F)i and the correlation

coefficient between the anomalous differences in a randomly

split data set CCano (Schneider & Sheldrick, 2002), as output

by the program SHELXC, were used as initial indicators of

data quality. On the basis of these statistics, the resolution

cutoffs recommended by Schneider & Sheldrick (2002) were

applied for substructure solution with SHELXD. In all cases

presented below the results of substructure solution and

phasing, whether successful or unsuccessful, were stable with

respect to the resolution cutoff.

For all data sets, 1000 trials of substructure solution were

used in SHELXD to find the anomalous scatterers. These

were six sulfur sites for insulin, six disulfide superatoms and
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Table 2
Insulin: statistics for individual data sets, for the cluster and for all data sets merged.

Values in parentheses are for the highest resolution shell.

Data set INS_L1_1 INS_L1_2 INS_L1_3 INS_L1_4 INS_L1_5 INS_L1_6 INS_L1_7

Unit-cell parameter a (Å) 78.0 77.9 78.0 78.0 78.0 78.0 77.9
Multiplicity 6.1 (6.1) 6.1 (6.0) 6.0 (6.0) 6.2 (6.2) 6.1 (6.2) 6.1 (6.1) 6.1 (6.1)
Completeness (%) 99.6 (100.0) 99.4 (96.5) 99.9 (99.8) 99.9 (100.0) 99.6 (97.1) 99.2 (96.8) 99.9 (100.0)
R factor† (%) 4.2 (12.9) 4.0 (12.1) 4.0 (11.0) 4.9 (16.6) 4.1 (12.5) 4.8 (15.6) 3.5 (9.1)
hI/�(I)i 32.3 (13.2) 33.7 (13.6) 34.9 (14.8) 28.3 (10.5) 33.4 (13.7) 29.7 (11.3) 38.1 (17.1)
B factor (Å2) 23.9 23.9 23.8 24.4 23.3 24.1 23.5
h�F/�(�F)i, first shell 1.9 2.2 2.1 1.8 2.3 1.9 2.3
CCano, first shell (%) 71 87 75 76 89 84 90
Best CCall (%) 28.2 32.9 29.7 28.0 41.9 29.9 45.9
Best CCweak (%) 13.8 8.6 14.2 18.7 17.8 13.4 29.1
No. of solutions 0 0 0 0 28 0 53
CCmap (%) 0 0 0 0 84 0 84

Data set INS_L1_8 INS_L2_1 INS_L2_2 INS_L3_1 INS_L3_2 INS_cluster 1 INS_all

Unit-cell parameter a (Å) 77.9 78.5 78.9 78.2 78.3 78.0 78.0
Multiplicity 6.1 (6.1) 6.2 (5.7) 6.1 (5.7) 6.1 (6.2) 6.1 (5.9) 48.7 (47.3) 72.8 (67.2)
Completeness (%) 99.9 (100.0) 100.0 (100.0) 99.8 (97.4) 99.9 (100.0) 99.7 (100.0) 100.0 (100.0) 100.0 (100.0)
R factor† (%) 3.9 (11.5) 8.2 (51.8) 11.4 (62.1) 4.0 (10.5) 4.2 (11.2) 5.5 (14.3) 13.9 (26.7)
hI/�(I)i 34.1 (14.5) 22.5 (3.2) 16.5 (3.1) 33.3 (15.4) 35.3 (17.9) 74.0 (32.0) 52.1 (24.1)
B factor (Å2) 23.6 27.1 26.1 24.2 24.4 23.8 24.1
h�F/�(�F)i, first shell 1.9 1.6 1.3 1.7 1.7 3.9 2.8
CCano, first shell (%) 83 75 76 86 88 94 52
Best CCall (%) 37.0 31.5 31.2 38.2 38.3 47.7 48.8
Best CCweak (%) 15.8 14 10.2 15.1 17.4 26.5 24.1
No. of solutions 2 0 0 2 2 363 80
CCmap (%) 80 0 0 80 81 86 84

† R factor =
P
½jIðh; iÞ � IðhÞj�=

P
Iðh; iÞ calculated using XSCALE.



one calcium site for trypsin, 17 sulfur sites for thaumatin and

11 selenium sites for AroF. The success rate for each case

was determined using a selected CCall/CCweak cutoff of 35/15

for insulin, 38/12 for trypsin, 40/15 for thaumatin and 35/15

for AroF. The cutoffs were selected by analyzing the CCall

distribution of the best data set for each of the four proteins.

The standard SHELXD statistics CCall/CCweak were used to

evaluate the data-set performance in the substructure solution

(Sheldrick, 2010; Schneider & Sheldrick, 2002). In order to

assess the accuracy of the final experimental phases, we used

the map correlation coefficients (CCmap) between the electron-

density maps calculated using the phases output by SHELXE

and the phases calculated from the model. The PDB entries

used were 2bn3 and 2bnl (Nanao et al., 2005) for insulin and

thaumatin, respectively, 2g55 (Mueller-Dieckmann et al., 2007)

for trypsin and 2o11 (M. Bruning, G. P. Bourenkov, N. I.

Strizhov & H. D. Bartunik, unpublished work) for AroF. The

model phases were estimated using the program REFMAC5

(Murshudov et al., 2011) after appropriate origin matching

between the model and the SHELXD/E solution, but without

any refinement applied to the model. The procedure is justi-

fied by the fact that the PDB models used were refined to

much higher resolution compared with the resolution of our

data and there were no significant changes in the CCmap after

refinement was carried out for a few selected data sets.

3. Results

3.1. Insulin

The small protein insulin is often used to test the ability to

solve MX structures by sulfur SAD. For this study, we selected

really tiny crystals and an X-ray energy that was far from

the optimal energy usually recommended for sulfur SAD

measurements (Mueller-Dieckmann et al., 2005). Based on

common standards, such as resolution, merging statistics and

completeness, all 12 diffraction data sets collected are of

rather good quality, with some variations in the statistical

parameters owing to different crystal sizes and diffraction

quality (Table 2). The data-collection redundancy was rela-

tively low for a crystal with cubic symmetry and the anomalous

difference signal was weak even in the low-resolution shells.

Nevertheless, a clear substructure solution was obtained using

some of the individual data sets, although at a fairly low
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Figure 1
Hierarchical cluster-analysis dendrograms for the insulin (a), trypsin (b), thaumatin (c) and AroF (d) data sets.



contrast level, as can be judged by both the low frequency of

hits (0.1–0.5%) and the low CCweak scores (<20%) of the top

solutions. Only one data set, INS_L1_7, provided a convincing

solution on the CCall/CCweak criterion (Schneider & Sheldrick,

2002). Apart from this data set, which had a significantly lower

overall Rmerge of 0.035, the data sets delivering solutions could

not be distinguished on the basis of the standard data statistics.

The results of the hierarchical cluster analysis are shown in

Fig. 1(a). From this dendrogram, it is possible to distinguish

three principal clusters, named INS_clusters 1, 2 and 3. The

most prominent result of the analysis is that all of the crystals

mounted in the same loop appear in the same cluster. Eight

data sets constituting the largest cluster were merged together

to produce the data set INS_cluster 1.

The anomalous signal statistics h�F/�(�F)i of the merged

data were improved considerably with respect to any of the

individual data sets (Fig. 2). The improvement is most evident

as an increase in the h�F/�(�F)i and CCano statistics in the

lowest resolution shells (Table 2). When N ideally isomor-

phous data sets with approximately equal h�F/�(�F)i are

merged, the resulting anomalous signal h|�F|/�(�F)iN can be

estimated according to the approximate equation

N ¼

�F

�ð�FÞ

� �2

N

�
2

�

�F

�ð�FÞ

� �2

�
2

�

: ð3Þ

We derive (3) under the assumption that �F is given by the

convolution of anomalous difference and normally distributed

random error. The estimate is only applicable when signals are

significant: h�F/�(�F)i2 > 2/�. For INS_cluster 1 with eight
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Table 3
Trypsin: statistics for individual data sets, for the cluster and for all data sets merged.

Values in parentheses are for the highest resolution shell.

Data set TRY_L1_1 TRY_L2_1 TRY_L3_1 TRY_L4_1 TRY_L5_1 TRY_L5_2 TRY_L6_1 TRY_L7_1 TRY_L8_1 TRY_L9_1

Unit-cell parameters (Å)
a 54.65 54.73 54.63 54.63 54.62 54.63 54.71 54.51 54.72 54.48
c 107.31 107.61 107.50 107.46 107.46 107.43 107.58 107.00 107.82 107.38

Multiplicity 10.7 (10.1) 11.2 (11.4) 11.2 (11.4) 11.3 (11.4) 11.0 (10.4) 11.0 (10.6) 10.9 (10.5) 11.0 (10.8) 10.8 (10.5) 11.4 (11.6)
Completeness (%) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 98.9 (98.2)
R factor (%) 6.6 (15.0) 4.9 (8.4) 5.6 (9.1) 6.4 (13.1) 6.1 (14.9) 5.8 (11.5) 5.8 (11.4) 6.1 (10.5) 5.9 (10.8) 5.8 (12.0)
hI/�(I)i 29.0 (14.3) 39.0 (23.9) 34.5 (21.7) 31.2 (16.9) 32.9 (15.6) 33.2 (17.8) 32.8 (18.0) 31.3 (18.4) 32.1 (18.8) 33.7 (17.5)
B factor (Å2) 22.0 21.7 21.2 22.7 22.4 21.2 21.5 20.4 21.2 21.9
h�F/�(�F)i, first shell 1.2 1.5 1.3 1.2 1.4 1.4 1.4 1.4 1.3 1.4
CCano, first shell (%) 73 68 70 60 82 80 87 90 79 75
Best CCall (%) 30.2 29.3 30.5 29.5 33.1 31.7 33.9 32.4 31.1 32.4
Best CCweak (%) 12.5 10.5 6.4 9.7 12.7 3.6 10.4 6.5 4.2 6.8
No. of solutions 0 0 0 0 0 0 0 0 0 0
CCmap (%) 0 0 3 0 0 0 1 3 0 2

Data set TRY_L9_2 TRY_L9_3 TRY_L10_1 TRY_L11_1 TRY_L12_1 TRY_L12_2 TRY_L13_1 TRY_cluster 3 TRY_all

Unit-cell parameters (Å)
a 54.50 54.68 54.50 54.44 54.55 54.55 54.41 54.72 54.65
c 107.48 107.81 106.66 107.09 107.19 107.28 107.46 107.82 107.31

Multiplicity 11.3 (11.3) 11.1 (10.8) 11.2 (11.1) 11.0 (10.5) 10.5 (9.9) 10.8 (10.3) 11.2 (11.0) 55.3 (52.3) 186.1 (178.0)
Completeness (%) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
R factor (%) 6.7 (16.4) 8.5 (23.4) 10.3 (26.5) 5.1 (10.7) 9.9 (25.4) 5.4 (12.9) 6.5 (12.3) 8.6 (18.0) 16.8 (26.7)
hI/�(I)i 30.4 (13.9) 24.4 (10.5) 22.4 (10.2) 38.1 (20.2) 21.6 (9.9) 35.8 (17.3) 30.5 (16.9) 53.4 (27.8) 57.6 (33.7)
B factor (Å2) 22.1 23.4 23.4 20.2 23.1 21.2 20.3 21.5 21.1
h�F/�(�F)i, first shell 1.4 1.1 1.2 1.6 0.9 1.4 1.1 2.2 2.2
CCano, first shell (%) 64 65 68 76 62 75 70 85 87
Best CCall (%) 29.2 30.1 30.4 30.2 28.2 30.3 29.5 45.2 51.7
Best CCweak (%) 7.3 12.2 9.9 7.9 11.3 6.8 8.2 19.5 25.9
No. of solutions 0 0 0 0 0 0 0 21 37
CCmap (%) 0 1 2 0 0 0 0 29 34

Figure 2
Anomalous difference ratio as a function of the squared scattering vector
h2 [h2 = |S2| = (2sin�/�)2] for individual data sets and for the cluster
identified. The figure was produced using ggplot2 (Wickham, 2009).



data sets, the increase in h�F/�(�F)i is close to that expected

for an ideal case. In the subsequent analysis, in order to

characterize the signal to noise in anomalous differences we

used h�F/�(�F)i and CCano statistics for reflections in the

first resolution shell >8 Å (Tables 2, 3 and 4).

The striking improvement in the data is clearly reflected by

the success rate of the substructure solution with SHELXD.

For INS_cluster 1 data a high CCall/CCweak scored solution

was obtained approximately every third trial. Adding the four

residual data sets to INS_cluster 1 and producing the INS_all

merged data set in fact significantly reduced the anomalous

signal in the low-resolution shell, in particular with respect

to the CCano parameter. The substructure solution was still

successful, although the success rate dropped considerably

compared with the INS_cluster 1.

Remarkably, for insulin all of the successful substructure

solutions in SHELXD resulted in highly accurate sets of

phases output by SHELXE as indicated by CCmap.

3.2. Trypsin

The anomalous signal for trypsin crystals is weaker

compared with the signal from insulin crystals (Table 1). Data-

processing statistics for TRY data sets are presented in Table 3.

The diffraction quality varied significantly from crystal to

crystal [0.5 < Rmerge < 0.10, 8 < last shell I/�(I) < 20]. None of

the individual data sets had a significant level of h�F/�(�F)i,

even at low resolution. Consequently, none of the substructure

solution attempts with individual data sets was successful.

The cluster dendrogram of TRY data (Fig. 1b) revealed

appreciable non-isomorphism, as indicated by the highest

overall cluster distance L = 0.4 among the four systems

studied. Four rather small principal clusters having from two

to five data sets were separated at the threshold level L = 0.14.

The statistics of the merged data set in the largest cluster

TRY_cluster 3 improved significantly; the increase in the low-

resolution h�F/�(�F)i value is consistent with that expected

for the fivefold increase in the multiplicity. For the substruc-

ture solution we exploited the data truncated at 3.5 Å reso-

lution and searched for six disulfides as superatoms and one

calcium site (the SHELXD settings were identical to those

used for individual TRY data sets). The solution was unam-

biguously successful according to the CCall/CCweak criterion,

although the success rate was still rather low. The resulting

electron-density maps were rather noisy overall, as expected

for very weak SAD data and low solvent content (32%), but

would nevertheless provide a starting point for successful

model building according to a visual inspection of the maps.

Despite the large total number of TRY data sets, merging

all of them together did not result in any significant
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Table 4
Thaumatin: statistics for individual data sets, for the cluster and for all data sets merged.

Values in parentheses are for the highest resolution shell.

Data set THA_L1_1 THA_L1_2 THA_L1_3 THA_L1_4 THA_L1_5 THA_L1_6 THA_L2_1 THA_L3_1

Unit-cell parameters (Å)
a 58.00 57.92 57.92 57.92 57.88 57.93 57.95 57.93
c 150.35 150.23 150.22 150.28 150.22 150.32 150.27 150.23

Multiplicity 8.0 (7.7) 8.0 (7.5) 8.0 (7.6) 8.0 (7.7) 8.0 (7.6) 8.0 (7.6) 8.0 (7.6) 8.0 (7.5)
Completeness (%) 99.9 (98.1) 99.9 (99.3) 99.9 (98.2) 99.9 (99.3) 99.9 (98.1) 99.9 (98.8) 100.0 (100.0) 99.9 (99.6)
R factor (%) 6.9 (23.9) 8.2 (30.0) 10.0 (33.8) 7.9 (28.5) 6.9 (23.9) 9.2 (37.5) 6.6 (22.9) 6.4 (20.5)
hI/�(I)i 26.8 (8.5) 23.9 (6.5) 21.9 (6.6) 25.5 (7.8) 26.8 (8.5) 21.8 (5.7) 27.9 (8.4) 27.8 (9.4)
B factor (Å2) 13.3 13.6 13.6 13.8 13.3 14.0 13.5 13.0
h�F/�(�F)i, first shell 2.2 2.2 2.0 2.3 2.4 2.1 2.5 2.4
CCano, first shell (%) 76 75 79 81 87 79 84 82
Best CCall (%) 43.8 50.3 41.5 45.5 45.3 43.3 46.4 47.3
Best CCweak (%) 19.9 20.6 16.2 21.6 20.0 18.7 22.4 23.8
No. of solutions 26 38 1 38 44 16 17 58
CCmap (%) 0 15 6 24 20 35 33 46

Data set THA_L3_2 THA_L4_1 THA_L5_1 THA_L6_1 THA_L7_1 THA_cluster 1 THA_all

Unit-cell parameters (Å)
a 57.98 57.84 57.81 57.82 57.89 58.00 58.00
c 150.12 150.08 150.10 150.17 150.21 150.35 150.35

Multiplicity 8.3 (7.6) 6.4 (1.3) 8.0 (7.7) 8.0 (7.9) 8.0 (7.7) 56.0 (54.4) 100.9 (94.7)
Completeness (%) 96.3 (96.4) 90.0 (22.4) 100.0 (99.9) 100.0 (100.0) 100.0 (100.0) 99.9 (99.9) 100.0 (100.0)
R factor (%) 8.9 (32.6) 4.9 (17.1) 4.7 (11.8) 7.3 (13.5) 15.7 (46.7) 9.2 (18.7) 12.2 (23.6)
hI/�(I)i 22.2 (6.4) 27.7 (2.6) 35.0 (14.8) 23.8 (13.8) 15.0 (4.5) 59.2 (30.9) 57.3 (31.9)
B factor (Å2) 13.0 14.4 12.6 13.0 15.4 12.9 12.8
h�F/�(�F)i, first shell 2.1 2.6 2.7 2.1 1.9 4.5 3.9
CCano, first shell (%) 76 78 87 81 65 94 96.4
Best CCall (%) 32.3 44.7 50.1 35.5 34.9 57.6 55.1
Best CCweak (%) 12.6 24.1 22.3 13.3 8.9 32.3 26.6
No. of solutions 0 20 143 0 0 323 181
CCmap (%) 2 30 80 9 1 83 60



improvement in the anomalous data statistics. The contrast

and success rate of structure solution, as well as the accuracy

of the resulting phases, improved marginally (Table 3).

3.3. Thaumatin

For data collection from thaumatin crystals we used a lower

X-ray energy and the expected anomalous signal should be

stronger than in the insulin and trypsin cases (Table 1). In spite

of the small size of the crystals, all data sets showed rather

good statistical quality and were similar to each other in

quality. An exception is THA_L5_1, where the crystal used

diffracted significantly more strongly than the others. The

substructure searches were unsuccessful for only four data sets

(Table 4), but only THA_L5_1 also produced a high-quality

electron-density map. Other maps had rather poor contrast,

as indicated by low CCmap values. The results of hierarchical

cluster analysis applied to the THA data sets are presented in

Fig. 1(c).

Crystals of thaumatin appeared to be less divergent struc-

turally compared with insulin or trypsin crystals. This is indi-

cated by the mean cluster distance value of L = 0.18 for all

data sets. The largest THA_cluster 1 contained seven data sets

collected from crystals mounted in different loops: THA_L1

and THA_L3.

With the merged THA_cluster 1 data set the anomalous

signal increased quantitatively as expected for the seven

isomorphous data sets. The success rate of substructure solu-

tion rose above 30% and excellent-quality phase sets were

obtained from SHELXE. Note that this cluster did not include

the best phasing data set THA_L5_1. With all THA data

sets merged together, the success rate and contrast in the

substructure solution decreased, although the solution was

still unambiguous. The quality of the resulting electron-density

maps was clearly compromised compared with either the best

cluster or the best individual data set.

3.4. AroF

AroF crystals diffracted to a much lower resolution than

the crystals of all other systems in this study; however, the Se

atoms provide a much stronger anomalous signal compared

with sulfur (Tables 1 and 5). Table 5 presents the data-

processing statistics for single AroF data sets. There are

variations in data quality that are a consequence of different

crystal sizes and diffraction quality. Although the regular data

statistics [Rmerge and I/�(I)] for some of the data sets appear

at the limit of being acceptable (e.g. overall Rmerge > 0.3), the

h�F/�(�F)i was rather high and the Se-substructure deter-

mination was successful for all individual data sets.

Hierarchical cluster analysis of the AroF data is presented

in Fig. 1(d). Most of the crystals are isomorphous. A large

cluster consisting of nine (out of 12) data sets can be selected

for the mean cluster distance cutoff L = 0.14. Merging together
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Table 5
AroF statistics for individual data sets, for the cluster and for all data sets merged.

Values in parentheses are for the highest resolution shell.

Data set AroF_L1_1 AroF_L1_2 AroF_L1_3 AroF_L2_1 AroF_L2_2 AroF_L2_3 AroF_L2_4

Unit-cell parameters (Å)
a 132.38 132.15 132.93 132.03 132.98 132.03 132.07
c 161.01 160.57 160.25 160.26 160.10 160.32 160.46

Multiplicity 14.0 (13.1) 11.6 (11.4) 11.6 (11.5) 11.5 (11.2) 11.5 (11.2) 11.5 (11.4) 11.5 (11.3)
Completeness (%) 82.6 (84.6) 99.2 (99.6) 99.9 (100.0) 100.0 (100.0) 99.9 (100.0) 99.9 (100.0) 100.0 (100.0)
R factor (%) 33.5 (87.7) 27.9 (81.2) 11.3 (26.6) 23.3 (66.7) 13.6 (32.5) 12.6 (28.4) 14.6 (31.6)
hI/�(I)i 8.5 (3.3) 10.3 (4.1) 20.8 (10.0) 11.5 (4.54) 17.1 (8.8) 17.5 (9.3) 14.8 (7.9)
B factor (Å2) 32.6 36.6 29.3 34.2 31.0 30.6 30.3
h�F/�(�F)i, first shell 2.4 2.7 4.9 2.9 3.6 3.4 3.1
CCano, first shell (%) 77 84 96 90 95 94 94
Best CCall (%) 20.9 42.8 56.5 44.1 52.7 50.2 50.3
Best CCweak (%) 7.8 25.9 28.8 23.5 26.3 23.2 25.7
No. of solutions 0 29 372 51 201 137 147
CCmap (%) 59 80 89 86 88 88 87

Data set AroF_L3_1 AroF_L3_2 AroF_L3_3 AroF_L3_4 AroF_L3_5 AroF_cluster AroF_all

Unit-cell parameters (Å)
a 132.15 132.08 132.17 132.16 132.21 132.93 132.38
c 160.71 160.53 160.77 160.78 160.83 160.25 161.01

Multiplicity 11.6 (11.5) 11.6 (11.5) 11.5 (11.5) 11.5 (11.5) 11.5 (11.5) 103.8 (103.8) 137.5 (125.7)
Completeness (%) 99.6 (99.9) 99.9 (100.0) 100.0 (100.0) 99.9 (100.0) 100.0 (100.0) 100.0 (100.0) 99.9 (99.9)
R factor (%) 12.6 (30.6) 10.8 (23.7) 8.5 (15.9) 9.0 (17.3) 8.7 (16.2) 12.4 (26.0) 17.1 (38.4)
hI/�(I)i 21.7 (12.2) 21.1 (11.0) 24.9 (14.9) 24.1 (14.5) 24.7 (15.1) 58.9 (34.5) 60.7
B factor (Å2) 29.9 29.7 29.1 28.1 28.9 28.7 32.6
h�F/�(�F)i, first shell 4.5 4.4 4.4 4.5 4.3 11.3 11.9
CCano, first shell (%) 95 95 95 96 94 99 99
Best CCall (%) 57.2 55.1 56.0 55.6 56.2 61.0 61.2
Best CCweak (%) 35.3 27.0 27.7 27.6 29.2 32.6 32.2
No. of solutions 404 294 350 305 384 524 491
CCmap (%) 88 88 88 89 88 89 89



the data set of the AroF_cluster improved the signal to noise

in anomalous differences nearly threefold to the unusually

high level of >10. This improvement was clearly reflected by

the substructure-solution statistics (a success rate of >50% and

high CCall/CCweak values), but an improvement in terms of

electron-density maps, which already had very high quality for

most of the individual AroF data sets, was not visible. Using all

data, i.e. adding three data sets lying outside the principal

cluster, did not have any qualitative influence on the data.

4. Discussion

The effects of radiation damage in macromolecular crystallo-

graphy cannot be overcome. We can optimize the conditions

of measurement, but there is an absolute limit to the resolu-

tion and data quality which can be obtained from one crystal

(Bourenkov & Popov, 2010). The situation can only be

improved by merging data from a subset of homogeneous

samples. This approach can be applied to assemble a complete

data set and to increase the signal-to-noise level of experi-

mental data. As has recently been demonstrated experimen-

tally (Liu et al., 2011), the anomalous signal, success in

SAD substructure determination and accuracy of phases and

electron-density maps all improve with an increase in the

number of crystals used in merging. The results of our tests

completely support these conclusions, with the condition that

merging of isomorphous data sets has taken place.

In this study, we evaluated the possibility of using hier-

archical cluster analysis using the cluster-distance metric based

on the intensity correlation coefficients as a tool for such a

selection. The results clearly demonstrate improvement in

the quality of the multi-crystal anomalous difference data sets

created on the basis of cluster analysis in all of our tests. How

strong the effects of the improvement were on the different

steps of the structure solution varied significantly from case

to case. This is not surprising in view of the rather high

complexity of the phasing process, which is dependent on

many parameters in addition to the signal-to-noise ratio in the

data. As a further level of complexity, the comparative results

presented here are influenced by the particular sample of

structural variability that was captured in each experiment.

Nevertheless, we demonstrate that in none of the examples

were the best cluster-based multi-crystal data of inferior

quality when compared with any of the single-crystal data sets

or compared with all data sets merged blindly with no analysis.

The addition of non-isomorphous data sets significantly

deteriorated (in the cases of insulin and thaumatin) or did not

further improve (for AroF) the anomalous signal. In the case

of trypsin, where only a small isomorphous cluster was found,

averaging all data gave slightly better results. The necessity of

selecting isomorphous subsets when using the multi-crystal

data is best illustrated using the examples involving a small

number of data sets. Fig. 3 presents the h�F/�(�F)i values

plotted against the resolution shells for two data sets

INS_L2_1 and INS_L3_1 that fall into different clusters and

for a data set where the two are merged together. In the latter,

the weak anomalous signal which was initially present dete-

riorates completely. Fig. 4 represents the electron-density map
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Figure 4
Electron-density maps for thaumatin after SHELXE obtained using combined data sets.

Figure 3
Anomalous difference ratio as a function of the squared scattering vector
h2 for data sets INS_L2_1 and INS_L3_1 and for the merged data.
Merging data from crystals identified as belonging to separate clusters
results in a reduction of the anomalous signal (Wickham, 2009).



for thaumatin data sets calculated using SHELXE phases after

three cycles of autotracing. The map obtained by merging data

sets belonging to the same cluster, THA_L1_2, THA_L1_3

and THA_L1_5, presents a marked improvement in the

phases, with a CCmap of 82%. In contrast, after merging data

sets THA_L1_2, THA_L2_1 and THA_L6_1 the map remains

uninterpretable, with a CCmap of 37%. In the following, we

address the question of whether our analysis does in fact

deliver optimal data subsets or whether a better selection

would be possible. Being unable to carry out an exhaustive

analysis of all possible subsets of data, we followed the success

rate of the thaumatin substructure solution as a function of

the number of data sets included in merging, starting with

THA_L1_2 and first adding the data sets inside the principal

THA_cluster 1 and then expanding the cluster. The result is

plotted in Fig. 5. One can clearly see that the data quality

improves continuously while adding more data sets that

belong to the cluster. Further addition of the (distinctly best)

data set still improves the contrast (marginally), but adding

further data sets degrades the results continuously. Similar

analysis for the AroF data is presented in Fig. 6. Here, contrast

saturation is rapidly achieved inside the small AroF_sub_

clusters 1 and 2, each with four members and separated at

the threshold L = 0.10. The contrast remained practically

unchanged on adding the ninth member of the principal

cluster and then marginally degraded on adding further data

outside the cluster.

Our results support the choice of the correlation coefficient

between data sets and the cluster distance described in (1) as a

reliable indicator of crystal isomorphism. The choice of the

clustering threshold value was based on experience and was

also proven to be practically useful. Both the choice of the

metrics and the best cluster-selection procedure can be opti-

mized for various problems and conditions. The advantages of

the intensity-based correlation metric chosen are: (i) it directly

uses the standard data-processing program (XSCALE) output,

(ii) it is effectively independent of the scaling the data sets

together and on the estimation of standard uncertainties and

(iii) the ready application of the same method to the study of

isomorphism beyond anomalous scattering. One obvious

drawback of the intensity correlation-based metric is that it

does not account for the signal to noise in the data and may be

less indicative when data quality varies strongly between the

data sets. This is observed in case of AroF, where three data

sets AroF_L1_1, AroF_L1_2 and AroF_L2_1 lying outside

the principal cluster are much weaker than the others; when

included in merging they are correctly down-weighted and

induce no negative influence on the result. Improved metrics

accounting for such effects can be derived.

For the SAD applications considered here, a metric based

on the correlation between the signed �F values is clearly

of interest. For instance, it would not only account for non-

isomorphism and data errors, but also for the variation in the

anomalous substructure in the case of heavy-atom derivatives.

Unfortunately, such a simple statistic is not calculated by any

of the standard scaling programs that we are aware of. One

should also note that (1) is not applicable to low correlations

on �F values, as expected for weak data. However, if in the

future the appropriate analysis were made routinely available

then the method described here would be routinely applicable.

The choice of clustering threshold criteria dependent on

the expected signal could also improve the performance of the

method in general. In fact, considering that the final aim of

the clustering is to produce merged ‘centroid’ data, centroid-

based clustering algorithms (e.g. Tan et al., 2006) which do not

require a notion of ‘distance threshold’ could be more efficient

compared with the hierarchical clustering. Finally, a program

selecting the best subset of the basis of global maximization of,

for example, h�F/�(�F)i on all possible data subsets is also

feasible.

The experiments presented here, and the cluster analyses

shown in Fig. 1, suggest a further rather important implication.

In the cases of all four test systems, the principal clusters

selected only on the basis of diffraction data consistency,

without any knowledge of sample history, showed a very clear

trend to group crystals mounted in the same cryoloop. This is
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Figure 5
Percentage of successful solutions from SHELXD versus number of data
sets merged for thaumatin.

Figure 6
Percentage of successful solutions from SHELXD versus number of data
sets merged for AroF.



precisely the case for all three clusters found for INS data.

Crystals mounted on loop THA_L1 dominate in the principal

cluster of thaumatin. The best phasing cluster of trypsin is

mostly made up from crystals from loop TRY_L9. A similar

situation is found for AroF_sub_clusters 1 and 2. These

observations strongly suggest that the major physical source of

the non-isomorphism is variation in sample treatment during

sample transfer, cryoprotection, mounting and flash-cooling.

Indeed, at least in our hands, sample treatment involved a

number of poorly controlled parameters such as the soaking

time in the cryosolution, the dehydration time during the

mount transfer, the cooling rate in the cryostream etc. Inter-

estingly, the overall best isomorphism, with the exception of

the very weak data sets discussed above, is clearly observed

for AroF crystals, which were treated without the cryopro-

tection step.

5. Conclusion

The purpose of the present study was to demonstrate the

importance of hierarchical cluster analysis in understanding

non-isomorphism of macromolecular crystals; in particular, it

can help in the selection of isomorphous crystals. Determi-

nation of the distance matrix, based on the correlation co-

efficient between scaled intensities, played a major role in the

present work. The results of this study illustrate that for SAD

data collection it is of great importance to use a protocol that

helps to appropriately merge the crystal data sets. The rele-

vance of merging isomorphous data sets is clearly supported

by the current findings for the four proteins investigated. A

dendrogram was used to select the crystal data sets to improve

the anomalous signal. The selection of data sets using this

method was also advantageous in solving the crystal sub-

structure for two of these proteins. Moreover, the improve-

ment of the anomalous signal in SAD experiments obtained

by merging isomorphous data could be advantageous, espe-

cially for weak signals.

For difficult crystallographic cases, this method could permit

substructure determination for some cases where it is not

possible using individual data sets. The results of this research

support the idea that meticulous selection of data sets can

lead to better determination of the substructure than using

randomly chosen data sets.

The combination of multi-crystal data-collection techniques

with advanced statistical data-analysis methods has clear

potential to expand the applicability of sulfur-SAD phasing to

more complex structures. This methodology should be further

extended to aid other applications such as heavy-atom deri-

vative phasing or, possibly, resolution enhancement for poorly

ordered systems. The development of automated and repro-

ducible sample-handling techniques that provide better control

over the sample state throughout the process is likely to

become another important component.
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